Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 12(2): 2275606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874309

RESUMO

Swine H1N1/2009 influenza is a highly infectious respiratory disease in pigs, which poses a great threat to pig production and human health. In this study, we investigated the global expression profiling of swine-encoded genes in response to swine H1N1/2009 influenza A virus (SIV-H1N1/2009) in newborn pig trachea (NPTr) cells. In total, 166 genes were found to be differentially expressed (DE) according to the gene microarray. After analyzing the DE genes which might affect the SIV-H1N1/2009 replication, we focused on polo-like kinase 3 (PLK3). PLK3 is a member of the PLK family, which is a highly conserved serine/threonine kinase in eukaryotes and well known for its role in the regulation of cell cycle and cell division. We validated that the expression of PLK3 was upregulated after SIV-H1N1/2009 infection. Additionally, PLK3 was found to interact with viral nucleoprotein (NP), significantly increased NP phosphorylation and oligomerization, and promoted viral ribonucleoprotein assembly and replication. Furthermore, we identified serine 482 (S482) as the phosphorylated residue on NP by PLK3. The phosphorylation of S482 regulated NP oligomerization, viral polymerase activity and growth. Our findings provide further insights for understanding the replication of influenza A virus.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Humanos , Proteínas Virais/genética , Nucleoproteínas/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/fisiologia , Proteínas Serina-Treonina Quinases/genética , Serina , Replicação Viral/genética , Proteínas Supressoras de Tumor
2.
J Virol ; 96(22): e0151322, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36314820

RESUMO

Viral infection activates the type I interferons (IFNs) and cellular antiviral responses. Eukaryotic initiation factor 4A-III (eIF4A3) has been shown to promote influenza A virus (IAV) replication by promoting viral mRNA splicing and spliced mRNA nuclear export. Here, we identified eIF4A3 as a negative regulator of virus-triggered type I IFN induction. Our study found that eIF4A3 promoted multiple RNA viruses' replication by binding to IFN regulatory factor 3 (IRF3) and impaired the interaction between tank-binding kinase 1 (TBK1) and IRF3, leading to attenuation of the phosphorylation of IRF3 by TBK1, the formation of IRF3 dimer, and the nuclear translocation of IRF3. This impaired its biological functions in the nucleus, which blocked IRF3 binding to interferon-stimulated response element (ISRE) and the interaction of IRF3 and CBP/p300, resulting in inhibiting the transcription of IFN-ß and downstream IFN-stimulated genes (ISGs), thereby impairing innate antiviral immune responses against RNA viruses. These findings reveal a previously unknown function of eIF4A3 in host innate immunity and establish a mechanistic link between eIF4A3 and IRF3 activation that expands potential therapeutic strategies for viral infectious diseases. IMPORTANCE Production of type I IFN is pivotal for the cellular antiviral immunity. Virus infection leads to the activation of transcription factor IRF3 and subsequent production of type I IFN to eliminate viral infection. Thus, the regulation of IRF3 activity is an important way to affect type I IFN production. IRF3 activation requires phosphorylation, dimerization, and nuclear translocation. Here, we first reported that eIF4A3, a member of DEAD box family, served as a negative regulator of antiviral innate immune responses by inhibiting IRF3 activation. Mechanistically, eIF4A3 binds to IRF3 to impair the recruitment of IRF3 by TBK1, which is independent of eIF4A3 ATP binding, ATPase, and RNA helicase activities. Our study delineates a common mechanism of eIF4A3 promoting replication of different RNA viruses and provides important insights into the negative regulation of host antiviral innate immune responses against virus infections.


Assuntos
RNA Helicases DEAD-box , Fator de Iniciação 4A em Eucariotos , Imunidade Inata , Vírus da Influenza A , Interferon Tipo I , Viroses , Humanos , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Transdução de Sinais , Viroses/imunologia , Replicação Viral
3.
Intractable Rare Dis Res ; 11(3): 96-104, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36200031

RESUMO

The current study updated data on the incidence and prevalence of 121 rare diseases listed in China's First List of Rare Diseases to provide rationales and references for the development and promotion of rare-disease-related policies. The National Health Commission of the People's Republic of China issued the Rare Disease Diagnosis and Treatment Guide (2019) (denoted here as China's Rare Disease Diagnosis and Treatment Guide). Then 121 diseases were registered with the national rare disease diagnosis and treatment network. The incidence/prevalence of 121 rare diseases varied from country to country. Data are available for a total of 76 rare diseases (76 of 121 rare diseases, 62.81%) in China, including data on the incidence of 23 rare diseases (19.01%) and data on the prevalence of 66 (54.55%). There are data on the incidence/prevalence of 112 rare diseases (112 of 121 rare diseases, 92.56%) at the global level, including data on the incidence of 86 rare diseases (71.07%) and data on the prevalence of 91 (75.21%). On average, the incidence of progressive muscular dystrophies, hyperphenylalaninemia, citrullinemia, and methylmalonic acidemia is over 1/10,000 in China. The prevalence of coronary artery ectasia, congenital scoliosis, retinitis pigmentosa, severe congenital neutropenia, congenital hyperinsulinemic hypoglycemia, and osteogenesis imperfecta is over 1/10,000 in China. All of these figures are beyond the cut-off of 1/10,000 according to the 2021 definition of rare diseases in China. As registration and investigation of rare diseases continues, the spectrum of rare diseases in some provinces is expanding. Diseases such as idiopathic pulmonary arterial hypertension, hepatolenticular degeneration, hemophilia, amyotrophic lateral sclerosis, idiopathic pulmonary fibrosis, and multiple sclerosis are relatively prevalent in some regions and cities of China. Registration efforts promote the correction of incidence/prevalence data, development of orphan drugs, coverage by medical insurance, and development of clinical and diagnostic pathways.

5.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200006

RESUMO

Influenza A viruses (IAVs) initiate infection by attaching Hemagglutinin (HA) on the viral envelope to sialic acid (SA) receptors on the cell surface. Importantly, HA of human IAVs has a higher affinity for α-2,6-linked SA receptors, and avian strains prefer α-2,3-linked SA receptors, whereas swine strains have a strong affinity for both SA receptors. Host gene CMAS and ST3GAL4 were found to be essential for IAV attachment and entry. Loss of CMAS and ST3GAL4 hindered the synthesis of sialic acid receptors, which in turn prevented the adsorption of IAV. Further, the knockout of CMAS had an effect on the adsorption of swine, avian and human IAVs. However, ST3GAL4 knockout prevented the adsorption of swine and avian IAV and the impact on avian IAV was more distinct, whereas it had no effect on the adsorption of human IAV. Collectively, our findings demonstrate that knocking out CMAS and ST3GAL4 negatively regulated IAV replication by inhibiting the synthesis of SA receptors, which also provides new insights into the production of gene-edited animals in the future.


Assuntos
Vírus da Influenza A/fisiologia , N-Acilneuraminato Citidililtransferase/antagonistas & inibidores , Infecções por Orthomyxoviridae/virologia , Receptores de Superfície Celular/metabolismo , Sialiltransferases/antagonistas & inibidores , Replicação Viral , Animais , Sistemas CRISPR-Cas , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Suínos
6.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087462

RESUMO

The viral ribonucleoprotein (vRNP) of the influenza A virus (IAV) is responsible for the viral RNA transcription and replication in the nucleus, and its functions rely on host factors. Previous studies have indicated that eukaryotic translation elongation factor 1 delta (eEF1D) may associate with RNP subunits, but its roles in IAV replication are unclear. Herein, we showed that eEF1D was an inhibitor of IAV replication because knockout of eEF1D resulted in a significant increase in virus yield. eEF1D interacted with RNP subunits polymerase acidic protein (PA), polymerase basic 1 (PB1), polymerase basic 2 (PB2), and also with nucleoprotein (NP) in an RNA-dependent manner. Further studies revealed that eEF1D impeded the nuclear import of NP and PA-PB1 heterodimer of IAV, thereby suppressing the vRNP assembly, viral polymerase activity, and viral RNA synthesis. Together, our studies demonstrate eEF1D negatively regulating the IAV replication by inhibition of the nuclear import of RNP subunits, which not only uncovers a novel role of eEF1D in IAV replication but also provides new insights into the mechanisms of nuclear import of vRNP proteins.IMPORTANCE Influenza A virus is the major cause of influenza, a respiratory disease in humans and animals. Different from most other RNA viruses, the transcription and replication of IAV occur in the cell nucleus. Therefore, the vRNPs must be imported into the nucleus for viral transcription and replication, which requires participation of host proteins. However, the mechanisms of the IAV-host interactions involved in nuclear import remain poorly understood. Here, we identified eEF1D as a novel inhibitor for the influenza virus life cycle. Importantly, eEF1D impaired the interaction between NP and importin α5 and the interaction between PB1 and RanBP5, which impeded the nuclear import of vRNP. Our studies not only reveal the molecular mechanisms of the nuclear import of IAV vRNP but also provide potential anti-influenza targets for antiviral development.


Assuntos
Núcleo Celular/metabolismo , Vírus da Influenza A/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Células A549 , Transporte Ativo do Núcleo Celular , Células HEK293 , Humanos , Vírus da Influenza A/genética , Fator 1 de Elongação de Peptídeos/genética , Ligação Proteica , Multimerização Proteica , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , Transcrição Gênica , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Proteínas Virais/química , Replicação Viral , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
7.
Intractable Rare Dis Res ; 9(1): 35-39, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32201673

RESUMO

The goal of this study was to analyze diminishment of the functional status of the skeleton, parts of organs, regions of the brain, connective tissues, and chondrocytes in patients with achondroplasia (ACH), pseudoachondroplasia (PSACH), and rickets. Three-dimensional non-linear scanning (3D-NLS) was used to analyze the functional status of patients with genetic bone disorders, including 7 patients with ACH, 3 patients with PSACH, and 3 patients with rickets. Results indicated that the percentage of patients with long bones in the decompensatory phase did not differ depending on whether they had ACH, PSACH, or rickets. Joints in the decompensatory phase did not differ in patients with ACH except for the right hip (16.67%). Various joints were in the decompensatory phase (16.7-33.3%) in patients with rickets. The thoracic vertebrae, lumbar vertebrae, and liver were in the decompensatory phase in all 3 groups of patients. Connective tissues were in the decompensatory phase in 33.33% of patients with ACH. None of the patients with PSACH had chondrocytes in the decompensatory phase but 66.67% of patients with ACH or rickets did. Regions of the brain in the decompensatory phase were most prevalent in patients with rickets or ACH but not in patients with PSACH. In conclusion, diagnosis based on 3D-NLS was able to identify the functional status of genetic bone disorders. Some areas of decompensation were common to the 3 diseases studied but other areas were specific to a given disease.

8.
Front Microbiol ; 11: 616364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391249

RESUMO

Antibiotics and organoarsenical compounds are frequently used as feed additives in many countries. However, these compounds can cause serious antibiotic and arsenic (As) pollution in the environment, and the spread of antibiotic and As resistance genes from the environment. In this report, we characterized the 28.5 kb genomic island (GI), named as ICERspD18B, as a novel chromosomal integrative and conjugative element (ICE) in multidrug-resistant Rheinheimera sp. D18. Notably, ICERspD18B contains six antibiotic resistance genes (ARGs) and an arsenic tolerance operon, as well as genes encoding conjugative transfer proteins of a type IV secretion system, relaxase, site-specific integrase, and DNA replication or partitioning proteins. The transconjugant strain 25D18-B4 was generated using Escherichia coli 25DN as the recipient strain. ICERspD18B was inserted into 3'-end of the guaA gene in 25D18-B4. In addition, 25D18-B4 had markedly higher minimum inhibitory concentrations for arsenic compounds and antibiotics when compared to the parental E. coli strain. These findings demonstrated that the integrative and conjugative element ICERspD18B could mediate both antibiotic and arsenic resistance in Rheinheimera sp. D18 and the transconjugant 25D18-B4.

9.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413131

RESUMO

The innate immune response is vital for host defense and must be tightly controlled, but the mechanisms responsible for its negative regulation are not fully understood. The cell growth-regulating nucleolar protein LYAR was found to promote replication of multiple viruses in our previous study. Here, we report that LYAR acts as a negative regulator of innate immune responses. We found that LYAR expression is induced by beta interferon (IFN-ß) during virus infection. Further studies showed that LYAR interacts with phosphorylated IFN regulatory factor 3 (IRF3) to impede the DNA binding capacity of IRF3, thereby suppressing the transcription of IFN-ß and downstream IFN-stimulated genes (ISGs). In addition, LYAR inhibits nuclear factor-κB (NF-κB)-mediated expression of proinflammatory cytokines. In summary, our study reveals the mechanism of LYAR in modulating IFN-ß-mediated innate immune responses by targeting phosphorylated IRF3, which not only helps us to better understand the mechanisms of LYAR-regulated virus replication but also uncovers a novel role of LYAR in host innate immunity.IMPORTANCE Type I interferon (IFN-I) plays a critical role in the antiviral innate immune responses that protect the host against virus infection. The negative regulators of IFN-I are important not only for fine-tuning the antiviral responses to pathogens but also for preventing excessive inflammation. Identification of negative regulators and study of their modulation in innate immune responses will lead to new strategies for the control of both viral and inflammatory diseases. Here, we report for the first time that the cell growth-regulating nucleolar protein LYAR behaves as a repressor of host innate immune responses. We demonstrate that LYAR negatively regulates IFN-ß-mediated immune responses by inhibiting the DNA binding ability of IFN regulatory factor 3 (IRF3). Our study reveals a common mechanism of LYAR in promoting different virus replication events and improves our knowledge of host negative regulation of innate immune responses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Proteínas Nucleares/metabolismo , Células A549 , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Interferon beta/genética , Mutação , Proteínas Nucleares/genética , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais/imunologia , Viroses/imunologia , Viroses/virologia , Replicação Viral , Vírus/classificação , Vírus/imunologia
10.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209172

RESUMO

Influenza A viral ribonucleoprotein (vRNP) is responsible for transcription and replication of the viral genome in infected cells and depends on host factors for its functions. Identification of the host factors interacting with vRNP not only improves understanding of virus-host interactions but also provides insights into novel mechanisms of viral pathogenicity and the development of new antiviral strategies. Here, we have identified 80 host factors that copurified with vRNP using affinity purification followed by mass spectrometry. LYAR, a cell growth-regulating nucleolar protein, has been shown to be important for influenza A virus replication. During influenza A virus infection, LYAR expression is increased and partly translocates from the nucleolus to the nucleoplasm and cytoplasm. Furthermore, LYAR interacts with RNP subunits, resulting in enhancing viral RNP assembly, thereby facilitating viral RNA synthesis. Taken together, our studies identify a novel vRNP binding host partner important for influenza A virus replication and further reveal the mechanism of LYAR regulating influenza A viral RNA synthesis by facilitating viral RNP assembly.IMPORTANCE Influenza A virus (IAV) must utilize the host cell machinery to replicate, but many of the mechanisms of IAV-host interaction remain poorly understood. Improved understanding of interactions between host factors and vRNP not only increases our basic knowledge of the molecular mechanisms of virus replication and pathogenicity but also provides insights into possible novel antiviral targets that are necessary due to the widespread emergence of drug-resistant IAV strains. Here, we have identified LYAR, a cell growth-regulating nucleolar protein, which interacts with viral RNP components and is important for efficient replication of IAVs and whose role in the IAV life cycle has never been reported. In addition, we further reveal the role of LYAR in viral RNA synthesis. Our results extend and improve current knowledge on the mechanisms of IAV transcription and replication.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Vírion/fisiologia , Replicação Viral , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Influenza Humana/genética , Influenza Humana/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...